
Draft submitted to PPoPP 2012

Parallel evaluation of dataflow programs
for extreme-scale many-task computing

Authors Hidden

Abstract
Developing programming solutions to help applications utilize the
high concurrency of multi-petaflop computing systems is a chal-
lenge. Emerging languages such as Dryad, Swift, and Skywriting
provide a promising direction. Their implicitly parallel dataflow se-
mantics allow the high level logic of large-scale applications to be
expressed in a manageable way while exposing massive parallelism
through many-task programming. However, the implementations
of these languages limit the evaluation of the overall program to
a single-node computer, relying on threads and the multiple SMP
cores of the evaluation node to generate the parallel tasks which are
in turn executed on many nodes.

In this work, we provide a model for distributed parallel eval-
uation of dataflow programs in a manner that spreads the over-
head of program evaluation and parallel task generation throughout
an extreme-scale computing system. This execution model enables
function and expression evaluation to take place on any node of a
computing system. It breaks parallel loops into fragments for dis-
tributed execution, and can more readily achieve the task generation
rates needed to efficiently utilize future exascale systems.

This paper describes the design and preliminary implementation
of a distributed evaluation model for implicitly parallel dataflow
programs, and motivates it with requirements projected from scien-
tific applications. The preliminary implementation shows promis-
ing scalability curves and processes 500K task/sec on 1024 low-
speed compute nodes.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features

General Terms Languages

Keywords MPI, ADLB, Swift, Turbine, exascale, scripting, con-
currency, dataflow, futures

1. Introduction
Exaflop computers capable of 1018 floating-point operations/s are
expected to provide concurrency at the scale of O(109) threads on
O(106) cores [22]. Such “extreme-scale” systems will enable and
demand new problem solving methods that involve many concur-
rent and interacting tasks. Methodologies such as rational design,
uncertainty quantification, parameter estimation, and inverse mod-

[Copyright notice will appear here once ’preprint’ option is removed.]

eling all have this many-task property. All will frequently have ag-
gregate computing needs that require exascale computers.

Running many-task applications efficiently, reliably, and eas-
ily on such extreme-scale computers is challenging. The many-task
model may be split into two important processes: task generation,
which evaluates a user program, often a dataflow script, and task
distribution, which distributed the resulting tasks to workers. The
user work is performed by leaf functions, which may be imple-
mented in native code or as external applications. This computing
model draws on recent trends that emphasize the identification of
coarse-grained parallelism as a first and separate step in applica-
tion development [12, 24, 25]. Leaf functions themselves may be
multi-core or even multi-node tasks.

Currently, many-task applications are programmed in two ways.
In one, the logic associated with the different tasks is integrated into
a single program, and the tasks communicate through MPI messag-
ing (where they exist in different memory spaces) or function calls
(as in the parallel version of the Common Component Architecture,
CCA [3], where components exist in the same memory space.) This
approach uses familiar technologies but can be inefficient unless
much effort is spent on incorporating load-balancing algorithms
into the application. Moreover, the approach can involve consid-
erable programming effort if multiple component codes have to be
tightly integrated. Load balancing libraries based on MPI, such as
the Asynchronous Dynamic Load Balancing Library, ADLB [11]
or on Global Arrays, such as Scioto [7] have recently emerged as
promising solutions to aid in this approach. They provide a mas-
ter/worker system with a put/get API for task descriptions, where
workers may dynamically add work to the system. However, they
lack a comprehensive programming model, data model, and other
features required for high productivity programming.

The second approach is that a script or workflow is written that
invokes the tasks, in sequence or in parallel, with each task read-
ing and writing files from a shared file system. Examples include
Dryad, Skywriting, and Swift. This approach is convenient for the
user, particularly when each task is a distinct executable program.
However, performance can be poor, as existing many-task scripting
languages are implemented with centralized evaluators that are not
capable of sustaining the high overall task rate necessary to effi-
ciently utilize O(106) cores.

Consider an example application in Swift:

Model m[];
Statistics s[];
foreach i in [0:999999] {
s[i] = runModel(m[i]);

}

This parallel foreach loop runs 106 independent instances of
the model. In a dataflow language like Swift, this foreach loop
generates 106 parallel tasks. However, the evaluation of the foreach
loop itself takes place on a single compute node (typically a cluster

Distributed parallel evaluation of dataflow programs... 1 2011/9/8

tasktask

evaleval

progprog

tasktask

500 task/sec

Centralized evaluation

evaleval

evaleval

progprog

evaleval

X 1,000
progprog progprog

tasktask tasktask
500
task/
sec

tasktask tasktask
500
task/
sec

500,000 tasks/sec
Distributed evaluation

Figure 1. Distributed parallel evaluation (right) increases scalabil-
ity over centralized evaluation (left).

“login node”). Such nodes, even with many cores (today ranging
from 8 to 24) are only able to generate about 500 task invocations
per second. Task distribution systems such as Falkon [18] achieve
3,000 tasks/second with more parallel resources. And despite the
fact that the Swift language exposes abundant task parallelism,
when the evaluation of the language is constrained to take place
on a single compute node, task generation rates can be a significant
scalability bottleneck. An application that needs to run 1012 10-
second tasks across 106 cores would need to run 1000 tasks per
core, and initiate 108 tasks per second to keep that many cores fully
utilized. This is many orders of magnitude greater than the rates
achievable with single-node dataflow language evaluation. If 105

processes, 0.01% of the system, are allocated as control processes,
each control process is responsible for generating 1000 tasks per
second.

This paper describes an approach capable of generating and
distributing tasks at this scale. Its innovation is based on express-
ing the semantics of parallel dataflow in a language-independent
representation with semantics similar to the Swift parallel script-
ing language, and implementing a distributed evaluation engine for
that representation which decentralizes the overhead of task gen-
eration. The engine is called “Turbine” and its intermediate code
input is called “TIC”. Turbine execution employs distributed de-
pendency processing, task distribution via ADLB, and a distributed
in-memory data store that makes TIC objects accessible from any
node of a distributed memory system. The approach combines the
performance benefits of explicitly parallel asynchronous load bal-
ancing with the programming productivity benefits of implicitly
parallel dataflow scripting.

The remainder of this paper is organized as follows. In §2, we
motivate this work by providing two representative examples of
scripted applications. In §4, we discuss existing and prior work
related to these problems. In §5, we describe our design for dis-
tributed parallel evaluation of TIC. In §6.2 and §6.3, we present the
Turbine layer in detail. In §7, we report performance results from
the use of the implementation in various modes. In §8 and §9, we
discuss the status of our work, and offer concluding remarks.

2. Motivation: Many-task Applications
Parallel scripted representation of applications for many-task com-
putations is convenient from the perspective of both the user and the
underlying evaluation engine. The user is presented with a rapidly
prototyped, compact yet complete application flow. Traditionally,
scripts have been imperative programs, with some exceptions such

as make. Under futures variable semantics, the evaluation engine
is presented with many, asynchronous dataflow dependent tasks to
be distributed to the execution environment. This section presents
many-task applications that have been conveniently represented by
parallel scripting paradigm and have produced parallel tasks in the
order of hundreds of thousands.

2.1 Application: Molecular Analysis in Biochemistry
The diagram in Figure 2 shows a schematic of modftdock, a protein
docking application. This is a three-stage workflow involving an
irregular granularity and computational load. It performs N dock
tasks on each of M molecules, then for each molecule, merges
the dock results and scores them. Table 1 provides performance
information on the tasks. The tasks listed for each stage can all
be performed concurrently provided the data dependencies at each
task are met. A slow task distribution rate can cause a bottleneck
in such a case where an intermediate task (modmerge) is of short
duration, but its completion is required in order to begin the fol-
lowing significantly-longer task (score). Unless such intermediate
tasks are dispatched at a high rate, the available compute cores can
not be optimally utilized, and execution of the overall application
will be delayed. Table 1 shows one such projected scenario where
an efficient task dispatch rate would keep 106 cores busy.

2.2 Application: Branch-and-bound Optimization
Power-grid distribution design is an example of a problem that in-
volves solving a single integer non-convex optimization problem.
The initial solution reveals how to subdivide the domain (branch-
ing), then a new tighter approximation is constructed on the subdo-
main and solved. The process is repeated. The solution of the prob-
lem on a given subdomain is guaranteed to not exist (bounding)
unless it corresponds to a globally optimal solution. Pseudocode to
solve a branch-and-bound problem is presented in Listing 1. The
parallel branch-and-bound method has a dynamic computational
profile: for problems with partial differential equation (PDE) con-
straints, 1,000 subdomains could be solved, each using 1,000 pro-
cessors, allowing an effective use of 1M processors simultaneously.

Queue q; Problem p; Solution s;
double upperBound = Infinity;
q.enqueue (0);
while (q.top) {

p = q.dequeue;
s = optimize(p);
if (s.solution != Infeasible) {

if (s.solution == Integer) {
if (s.objective < upperBound) {

upperBound = s.objective; //bound
}}

else { // branch
q.enqueue(s.left);
q.enqueue(s.right);

}
}

}

Listing 1. Pseudo code for the branch-and-bound Optimization

2.3 Application Requirements
In addition to the above mentioned applications, ensemble stud-
ies involving different methodologies such as uncertainty quantifi-
cation, parameter estimation, massive graph pruning and inverse
modeling all have a requirement of being able to generate and dis-
patch tasks in the order of millions to the distributed resources.
We have been investigating some of these classes of applications,
such as the Decision Support System for Agrotechnology Transfer
(DSSAT) aimed at land-usage modeling and Soil and Water Assess-
ment Tool (SWAT) based studies in the field of Hydrology. On the

Distributed parallel evaluation of dataflow programs... 2 2011/9/8

Figure 2. The modftdock application flow; M and N denotes the number of proteins and the number of iterations per protein respectively

Application Stage Measured Required
Tasks Task Duration Tasks Task Emission Rate

modftdock
dock 1,200,000 1,000s 109 1012/s
modmerge 12,000 5s 107 2× 1012/s
score 12,000 6,000s 107 1.33× 1012/s

Power-grid Distribution economic-dispatch 10,000 15s 108 6× 1012/s
DSSAT runDSSAT 100,000 12s 108 8× 1012/s

Table 1. Quantitative description of applications and required performance on 106 cores

basis of the computational properties these application classes dis-
play, we believe, performance and resource utilization will increase
significantly when these applications are ported using Turbine.

3. Building Blocks: Swift and ADLB
Two technologies motivate and provide a foundation for the work
described here. Swift provides a productive programming model
for the high-level code of many applications, and the Asynchronous
Dynamic Load Balancing (ADLB) library provides the means to
take the Swift programming model to exascale performance levels.

Swift [4, 26] is a widely deployed parallel scripting language for
scientific computing. The Swift language is typed and concurrent,
providing multiple features to support distributed scientific batch
computing, include data structures (arrays, structs), string process-
ing, use of external programs, external data access to filesystem
structures, etc. Swift programs are compiled into the Karajan work-
flow language and interpreted by a runtime system based on the
Java CoG Kit [23]. Other work investigated additional languages
based on the Swift runtime system, such as Python [2] and R [19,
21]. While Swift is capable of generating and scheduling thousands
of tasks, and managing their execution on a wide range of dis-
tributed resources, each Swift script is evaluated on a single node,
resulting in a performance bottleneck. Removing such bottlenecks
is the primary motivation for the work described in this paper.

The Asynchronous Dynamic Load Balancing (ADLB) [11] li-
brary is an MPI-based library for managing a distributed work pool
at large scale. ADLB applications use a simple put/get interface
to deposit “work packages” into a distributed work pool and re-
trieve them. Work package types, priorities, and “targets” allow
this interface to implement sophisticated variations on the classical
master/slave parallel programming model. ADLB is efficient (up to
25,000 work packets per second per node on an Ethernet-connected
Linux cluster) and scalable (the nuclear physics applications de-
scribed in [11] has run on 131,000 cores on an IBM BG/P). ADLB
is used as the load balancing component of Turbine, where its work
packages are the indecomposable tasks generated by the system.
The implementation of its API is invisible to the application (Tur-
bine, in this case) and the work packages it manages are opaque
to ADLB. An experimental addition to ADLB has been developed

to support Turbine’s shared variables, implementing a publish/sub-
scribe interface.

4. Related Work
Scioto [7] is a lightweight framework for providing task manage-
ment on distributed memory machines under one-sided and global-
view parallel programming models.

Skywriting [13] is a coordination language that can distribute
computations expressed as iterative and recursive functions. It is a
dynamically typed language that offers limited data mapping mech-
anisms through a static file referencing; our language model offers
a wider range of static types with a rich variable-data association
through its dynamic mapping mechanism. The underlying execu-
tion engine, called CIEL [14] is based on a master-worker computa-
tion paradigm where workers can spawn new tasks and report back
to the master. As of this writing, Skywriting/CIEL lacks support
for Message-Passing based computation, which limits its deploy-
ability on a large class of distributed systems. Thanks to ADLB,
our framework integrates Message-Passing support in the core ex-
ecution engine. While scaling benchmarking results of the Sky-
writing/CIEL framework are shown on wide-scale distributed sys-
tems (e.g., clouds), no distributed interpretation/evaluation strategy
is known to exist for task generations through Skywriting scripts.

MapReduce [6] also provides a programming model and a
runtime system to support the processing of large-scale datasets,
Sawzall [17] is an interpreted language that builds on MapReduce
and separates the filtering and aggregation phases for more con-
cise program specification and better parallelization. MapReduce/-
Sawzall share our goal of providing a programming tool for the
specification and execution of large parallel computations on large
quantities of data and facilitating the utilization of large distributed
resources, but the MapReduce programming model just supports
key-value pairs as input or output datasets and offers two types
of computation functions, map and reduce; we use a type system
and allow the definition of complex data structures and arbitrary
computational procedures. Dryad [9] is an infrastructure for run-
ning data-parallel programs on a parallel or distributed system. In
addition to allowing files to be used for passing data between tasks,
it allows TCP pipes and shared-memory FIFOs to be used. Dryad
graphs are explicitly developed by the programmer; our graphs are

Distributed parallel evaluation of dataflow programs... 3 2011/9/8

implicit, and the programmer doesn’t have to worry about them.
Furthermore, Dryad does not allow iterative computation which
are easily expressed by Swift with looping constructs. A scripting
language called Nebula was originally developed above Dryad, but
it doesn’t seem to be in current use. Scripting-level use of Dryad
is now supported primarily by DryadLINQ [27], which generates
Dryad computations from the LINQ extensions to C#.

Spark [28] is an enhanced implementation of the Map-Reduce
paradigm in that it adds the support for iterative computations.
A distributed fault-tolerance layer called the Resilient Distributed
Dataset (RDD) is built into the framework that compensates for
failed nodes while maintaining the state of the computation.

Linda [1] introduced the idea of a distributed tuple space, which
is a key concept in ADLB and Turbine. This idea was further
developed for distributed computing in Comet [10], which has a
similar goal as our work, but focuses on distributed computing and
is not concerned with scalability on HPC systems. Lithe [16] is a
low-level framework that supports the development of parallelizing
libraries by taking advantage of the underlying Operating System’s
exposed resources.

The development of scripts or code to link together executable
tasks has been the subject of a fair amount of previous effort. Ex-
amples of this are PCN [8], CORBA [15], and CCA [3]. These sys-
tems generally assume large blocks of code need to be infrequently
linked, and are not concerned with the performance implications of
large numbers of executions.

Other related projects include: the Standard Template Adaptive
Parallel Library (STAPL) [20], a parallel programming framework
that extends C++ with support for parallelism; DAGuE [5], a frame-
work for scheduling and management of tasks on distributed and
many-core computing environments; and Lithe [16], a low-level
framework that supports the development of parallelizing libraries
using the underlying operating system’s exposed resources.

In conclusion, there are a significant number of parallel task dis-
tribution frameworks and languages. These frameworks provide/-
support/facilitate mechanisms/techniques to generate, dispatch and
execute dataflow coherent tasks over a distributed computing in-
frastructure. In general, these frameworks lack a suitable mecha-
nism for rapid task distribution, unlike our approach.

5. Distributed Parallel Dataflow Evaluation
We describe here the distributed parallel evaluation model that
Turbine uses to execute programs with implicitly parallel dataflow
semantics. Turbine’s function is to interpret an intermediate code
representation (Turbine Intermediate Code, or TIC) of a parallel
dataflow program. TIC specifies semantics which are similar to the
Swift parallel scripting language. We believe that TIC is general
enough to serve as a model for performing the distributed parallel
evaluation of many similar languages.

The main aspects of TIC are:

1. Implicit, pervasive parallelism: Most TIC statements are re-
lations between single assignment variables. Variables may be
open (unset) or closed (set to a value). Dynamic data depen-
dency management enables expressions to be evaluated and
statements executed when their data dependencies are met.
Thus all functions in a TIC program are conceptually exe-
cutable in parallel, limited in practice by throttling and by avail-
able resources.

2. Typed variables and objects: TIC variables and objects are
constructed with a simple type model comprised of the typical
primitive scalar types, a container type for implementing arrays
and structures, and a scalar type for mapping external files and
objects to in-memory variables.

3. References to external data: Variables may be “mapped” to
external data in files, as in Swift and PyDFLow. We don’t
discuss here the mechanism by which mapping takes place,
but assume that mappings are stored as an attribute of file-type
variables.

4. Constructs to support external execution: Most of the application-
level work in TIC is performed by external user application
components (programs or functions); TIC is primarily a means
to specify the parallel composition of the application compo-
nents.

5.1 The Swift Evaluation Model
To underscore the motivation for this work, it is useful to briefly
summarize the Swift program evaluation model [26]. A Swift pro-
gram starts in a global scope. All statements in the scope are al-
lowed to make progress concurrently through the application of
a lightweight-thread event engine. Statements that block on unset
variables are recorded and entered into a map of links from input
variables to a suspended stack frame. When the inputs are ready, the
suspended stack frame is restarted. Function invocations cause the
creation of new scopes (stack frames) in which new local variables
are dynamically created. When variables are returned by functions,
they are closed. Input and output variables passed to functions ex-
ist in the original caller’s scope, and are passed and accessed by
reference. Since input variables cannot be modified in the called
function, they behave as if passed by value.

The Swift evaluation model is capable of supporting large par-
allel scripts that run on thousands of processor cores. However, the
evaluation (i.e., interpretation) of the script itself is constrained to
run on a single node. This limitation is in large part due to the fact
that Swift’s future map is a shared in-memory data structure that
resides in a single node, and that no mechanism exists for cross-
address-space communication and synchronization of the state of
future objects. The execution model of Turbine eliminates the lim-
itations of this centralized evaluation model.

5.2 Overview of TIC
TIC operations include data manipulation, the definition of data-
dependent execution expressed as rules, and higher-level constructs
such as loops and function calls. TIC programs consist of variables,
statements, and functions. Variables are typed in-memory represen-
tations of user data that may be mapped to files. Variable values
may be scalars such as integers or strings or containers representing
language-level features such as arrays or structures (records). All
TIC variables are single-assignment futures: they are open when
defined and closed after a value has been assigned. Containers are
also futures, as are each of their members. Containers can be open
or closed; while they are open, their members can be assigned val-
ues. Containers are closed by an explicit close operation. In practice
is generated in the translation from the source program by scope
analysis and the detection of the last write, the end of the scope in
which they are defined, as any returned containers must be closed
output variables. Scopes (i.e., stack frames) provide a context for
variables for use as function and loop body activation records.
Scopes are composed into a linked stack of “activation records.”

Statements in TIC cause execution to occur and values to be
assigned to variables. Statement types are assignment, conditional
execution, and parallel iteration over collections. Statements serve
as links from task outputs to inputs, forming an implicit task graph
as the script executes.

TIC statements which require variables to be set before they can
execute (primarily the primitives which call an external user appli-
cation function or program) are expressed as the target operations
of rules which specify the action, the input dependencies required

Distributed parallel evaluation of dataflow programs... 4 2011/9/8

Variable
store

Variable
store

Parse/
translate
Parse/

translate
progprog

Rule engineRule engineEvaluatorEvaluator

Task pool / dispatcher (ADLB)Task pool / dispatcher (ADLB)

actions notifications

rules

variable IDs
and values

TIC

Turbine

Figure 3. Turbine component architecture.

for the action to execute, and what output data objects are then set
by the action. Building on our earlier example in Swift:

Model m = readModel();
Statistics s1 = runModel(m, 1);
Statistics s2 = runModel(m, 2);
Plot p = plotModel(s1, s2);

In this case, the model is run with two different random seeds,
1 and 2. These statements may be executed concurrently as soon as
m is closed. The resulting TIC statements are shown below:

when { } then {m} from {readModel m }
when {m} then {s1} from {runModel m 1}
when {m} then {s2} from {runModel m 2}
when {s1 s2} then {p} from {plotModel s1 s2}

The when statements correspond to rule definitions stored in the
distributed Turbine system. Data definitions, not shown, correspond
to addresses in the global data store. When m is set by the worker
processing the first action, rule engines responsible for dependent
actions are notified, and progress is made.

The high-level architecture of Turbine is shown in 3. One of Tur-
bine’s main innovations, which facilitates distributed evaluation, is
a distributed variable store based on futures. This store, accessible
form any computing node within a TIC program, enables values
produced by a function executing on one node to be passed to and
consumed by a function executing on another, and manages the req-
uisite event subscriptions and notifications. Rules are implemented
a rule engine which in turn uses the subscription and notification
services of the variable store. All three components in this archi-
tecture are implemented as multiple distributed parallel processes
(in an MPI sense), as described in §6.

As above, the user starts with a source program (e.g. in Swift).
This is translated into Turbine intermediate code, which is largely
a straightforward parsing and flattening operation with a small
amount of semantic analysis (e.g. to determine when collections
can be closed).

All TIC execution takes place within TIC functions, and pro-
ceeds as follows.

• A procedure executes by sending each action that requires rule
interpretation to the rule engine, and each action that involved
a real or generated procedure call to an evaluation engine, and
performs immediately a small number of primitive actions.

• These actions require variables to be closed:

Calling a function requires input vars to be closed.

Evaluating a conditional expression (the result of compil-
ing an if() or switch() statement) requires the variable that
represents the test condition to be closed.

Completion (but not initiation) of a segment of a foreach
loop requires all of its members to be closed.

Completion of a foreach loop requires all of its segments to
be completed.

Completion of a function call requires that all of its sub-calls
are completed and their resources freed.

• When a function is invoked, a stack frame is created for its local
variables. Input parameters and output results are held in a stack
frame higher up in the calling chain. Input parameters cannot be
modified. The outermost function is main() as in C, but has no
arguments (external arguments are passed as in Swift using an
access function arg()).

• Execution of the parallel foreach iterator is performed by
creating a special rule to wait for a (dynamically determined)
portion of the members of the associated collection to be set.

• The execution of a foreach fragment is performed as if the
body of the loop is a function which has access to any variables
it references in the parent scope as if they were passed as
parameters.

• Any action which can be executed immediately, such as stack
frame creation and variable initialization, is performed on entry
to the function. Then all concurrent work activities such as
evaluation of rules are sent back into the task distributor, to be
routed to an available evaluation process.

• Any actions which depend on data such as conditional calls,
expression evaluation (including calls to built-in primitives) and
evaluation of application functions (app calls) are expressed in
TIC as rules and sent to the rule engine to wait on their data
dependencies. When these are met, the rule engine sends the
action as a task to an evaluation engine.

• When all the actions initiated by a function (i.e., at or below the
current stack frame) have completed, any collections created on
the stack frame are freed, the stack frame and all its scalar vari-
ables are released, and the function is considered completed.

An example of this process is shown in Figure 4. First, the user
script is translated into the Turbine intermediate code (TIC) for-
mat 1©. In this example, a foreach rule is evaluated, resulting in
the interpretation of a distributed loop operation, which is evalu-
ated, producing additional execution units containing script frag-
ments. These fragments are distributed using the task distribution
system 2© and are evaluated by rule engines elsewhere, resulting in
the evaluation of application programs or functions, which are leaf
functions of the TIC task graph 3©. These obtain data from the data
store and perform local work, for example, by calling into a native
code routine 4©.

6. Implementation of Turbine
We describe here the structure of our current first prototype imple-
mentation of Turbine, which is close in nature to the more abstract
(and complete) design described in the prior section.

6.1 Program Structure
In our prototyping work, we leverage Tcl as the source language,
and express TIC operations as Tcl commands (“procs”). As our
focus is on refining the design of an intermediate representation
for the optimal distributed operation of Swift-like languages, we
have not yet adapted the Swift parser to produce TIC, and manu-

Distributed parallel evaluation of dataflow programs... 5 2011/9/8

foreach key, value in container
 my_func(key, value);

Swift script

TIC statements

foreach container block123
block123: when {t1 t2} my_func ...

foreach 0

Split parallel loops

TI
C

ev

al
ua

tio
n

...

Parse and translate1

3

4

foreach 10

TI
C

 C
od

e
ge

ne
ra

tio
n

U
se

r t
as

k
di

st
rib

ut
io

n

 my_func key14 value14

 User C function

foreach n-1

ADLB

ADLB

...

Leaf task
evaluation

Retrieve values
from data store

2

Figure 4. TIC execution in Turbine.

ally translate sample Swift test programs into TIC. We created a Tcl
interface to ADLB, and thus have a convenient way to create dis-
tributed memory SPMD representations of TIC. These are standard
MPI programs that can be launched by mpiexec. The programs we
generate thus rely on two supporting libraries: a task creation API
(Turbine proper) and a task distribution API (ADLB).

The task creation system evaluates the user script to produce
execution units for distribution by the distribution system. Thus in
the active process, new parallel work is generated on entry to most
function calls, and on encountering loop fragments within a func-
tion call that can be efficiently split further. Turbine uses the ADLB
API to create new tasks and to thus distribute the computational
work involved in evaluating parallel loops and function calls - the
two main parallelizable language constructs.

ADLB performs highly scalable task distribution, but does in-
cur some amount of client overhead and latency to ingest tasks. As
more ADLB client processes are employed to feed ADLB servers,
this overhead becomes more distributed and the overall task inges-
tion and execution capacity increases. Each client is attached to
one server, and traffic on one server does not congest other server
processes. ADLB can scale task ingestion fairly linearly with the
number of servers on systems as large as a 131K core BG/P. Thus
a primary design motivation of Turbine is to optimize the number
of TIC clients to maximize the ADLB task processing rate and thus
the utilization of extreme-scale computing systems.

6.2 Rules and Distributed Futures
The fundamental system mechanics required to perform the opera-
tions required by the previous section were developed in Turbine,
a novel distributed future store. The Turbine implementation com-
prises a globally-addressable data store, a rule evaluation engine, a
subscription mechanism, and an external application function eval-
uator. It is implemented as an MPI program using the ADLB API,
with each MPI process (rank) acting in one of the following roles.

There are two kinds of Turbine processes, each of which makes
calls into ADLB to both receive and issue work tasks:

• Turbine rule engines: These processes are responsible for
maintaining the rules that specify all dataflow dependencies.
When the input conditions of a rule are met, the rule engine
posts that rule’s action as a Turbine work unit to ADLB.

1

Task Distribution (ADLB)

Rule
Engine

Rule
Engine

Rule
Engine

Worker Worker Worker Worker Worker

Generated
Code

Fragments 3

4

5

6

......

2

Figure 5. Distributed components in Turbine futures mechanics.

• Turbine action evaluators: These processes receive rule ac-
tions from ADLB and perform them. Some actions result in the
submission of new rules; other actions are leaf functions.

The ADLB library is responsible for receiving and distributing
execution units throughout the system. As noted above, the ADLB
server has been extended (experimentally) in this work to support
Turbine data store operations as well as its normal services. Turbine
data items contain an identifier, a type, a status, and a value. Unique
data identifiers may be obtained from servers. When created, the
data item has the identifier, type, and status “open”. The location
of the data item is determined through a simple hash scheme that
places the item on one of the servers. The type of the item may be
string, integer, float, or one of the complex types (file, container)
described in §6.3. Data may be read or written by any component.

Each rule engine maintains a list of rules, each of which is con-
tains an identifier, input list, output list, and specification of what to
do when the inputs are ready. Each task executed by the system is
associated with exactly one rule, thus, the rule is an important part
of the implementation of the futures mechanism. Rule engines sub-
scribe to required data items on servers as necessary. When ready,
work is posted to the system through the server. Such execution
units may be external application functions for workers or script
fragments for evaluation by other rule engines.

Progress is made when futures are set and rule engines receive
notification that new input data is available. Turbine uses a simple
subscription mechanism whereby rule engines notify servers that
they must be notified when a data item is ready. As a result, the en-
gine either finds that the data item is already closed or is guaranteed
to be notified in the future. When a data item is closed, the process
receives a list of rule engines that must be notified regarding the
closure of that item, which allows progress to continue.

To carry out the execution of a user script, components inter-
act as shown in Figure 5. As discussed in §2, most processes act
as workers, with about 0.01% of the processes acting control pro-
cesses: servers or engines. First, the user script is evaluated by the
first rule engine 1©.

When a distributed loop construct is encountered, script frag-
ments are created 2© and posted to the task distribution system for
load-balanced execution on other rule engines 3©. Ultimately, calls
to the user’s external application programs of functions are pro-
duced and evaluated by workers 4©. Data operations to perform the
work may involve data services from multiple servers. On comple-
tion, output data items are closed 5© and rule engines containing
dependent rules are notified 6©.

Distributed parallel evaluation of dataflow programs... 6 2011/9/8

6.3 Data Structure Representation and Management
Turbine script variable data is stored on servers and processed by
engines and workers. These variables may be string, integer,
file, or container data.

A variable of type file is associated with a string file name,
however, unlike a string, it may be read before the file is closed.
Thus, output file locations may be used in Turbine rules as output
data, but the file name string may be obtained to enable the creation
of a shell command line.

file a "input.txt"
file b "output.txt"
when { } then {b} from {create_file filename(a)}
when {a} then {b} \

from {copy_file filename(a) filename(b)}

At the end of this given code, file output.txt is closed, allowing
it to be used as the input to other Turbine rules.

Complex data structures may be constructed through the use
of the core Turbine feature called containers. Container variables
are similar to other Turbine script variables, but the value of a
container variable is a mapping from keys to Turbine variable
identifiers. Operations are available to insert, lookup, and list values
in containers. This abstraction allows higher-level Swift language
features such as structs, arrays, and stack frames to be represented
in Turbine.

Turbine loops allow the user script to iterate over the keys
and values in a container in a manner compatible with the Swift
foreach construct. For simple loops over a range of values (con-
ceptually, do i = 1, 10) a range container is constructed and is
then used as the target of the iteration.

The stack in a Turbine program is represented as a container ref-
erence that is passed into a Turbine function. Thus, local function
variables may be obtained by looking up the corresponding symbol
in the container.

As an optimization, container keys are copied into the server
responsible for the container. This reduces the number of remote
data operations required for container operations used in iteration.

An additional optimization is the use of unevaluated expression
strings to represent arithmetic operations. For example, consider
the arithmetic case below:

Swift:

int a, b, c, d;
a = f(); b = g(); c = h(); d = i();
int x = (a+b)*(c+d);
trace(x);

Turbine:

integer a b c d
when { } then {a} from {f}

etc. ...

when {a b c d} then {x} \
from {arithmetic "(_+_)*(_+_)" a b c d}

when {x} then { } from {print x}

A naive implementation of the given arithmetic expression
would result in the creation of at least two temporary variables
and two additional data dependency rules to represent the expres-
sion. However, the Turbine implementation can represent the whole
expression with one rule, eliminating several messaging operations
to the distributed data store and reducing the processing required.

7. Performance Results
Our performance results focus on three main aspects of Turbine
performance: task distribution using ADLB, data operations using
the new ADLB data services, and evaluation of the distributed Tur-
bine loop construct. This provides a general picture of the ability of
the meet the performance goals required by our applications.

All results were obtained on the SiCortex 5872. Each MPI
process was assigned to a single core of a six-core SiCortex node,
which runs at 633 MHz and contains 4 GB RAM. The SiCortex
contains a proprietary interconnect with ∼1 microsecond latency.

The system has been successfully deployed on the IBM Blue
Gene/P system and the Cray XT5 and XE6. Large-scale results
from these systems are forthcoming.

7.1 Raw Task Distribution
To evaluate the ability of the Turbine architecture to meet its perfor-
mance requirements, we first report the performance of a key under-
lying library, ADLB. Following that model, each ADLB server oc-
cupies one control process. We have measured the ability of ADLB
to distribute tasks in a Turbine-like model from a single source.
ADLB is configured with one server and a given number of work-
ers. A single worker reads an input file containing a list of tasks
for distribution over ADLB to other workers. This emulates a Tur-
bine use case with a single rule engine that can produce rules as
fast as lines can be read from an input file. Two cases are mea-
sured, one in which workers execute sleep for a zero-duration run
(labeled “/bin/sleep”), and one in which they do nothing (labeled
“no-op”). The results are shown in Figure 6. In the no-op case, for
increasing numbers of client processes, performance improved un-
til the number of clients was 384. At that point, the ADLB server
was processing 21,099 tasks/sec, which far exceeds the desired rate
of 1,000 tasks/sec per control process. The no-op performance is
then limited by the single-node performance and does not increase
as the number of clients is increased to 512. When the user task
actually performs a potentially useful operation such as calling an
external application (/bin/sleep), the single-node ADLB server
performance in not reached by 512 client processes.

It should be noted that in practice, a Turbine application may
post multiple additional “system” tasks through ADLB in addition
to the “user” tasks actually required for the user application. Thus,
the available extra processing on the ADLB server is appropriate.
Overall, this indicates that ADLB is capable of supporting the
system at the desired scale.

7.2 Data Operations
Next, we measure another key underlying service used by the Tur-
bine architecture: the ADLB-based data store. This new component
is intended to scale with the number of tasks running in the system;
each task will need to read and write multiple small variables in the
data store to enable the user script to make progress.

We have measured the performance of the ADLB data store and
retrieve functionality added to the ADLB API for our system. A
Turbine system is configured with a given number of servers and
clients, and with one rule engine that is idle. ADLB store opera-
tions are performed on each client, each working on independent
data. Each client interacts with different servers on each operation.
Each client creates 200,000 small data items in a two-step process
compatible with the dataflow model; they are first allocated and
initialized, then set with a value and closed.

Figure 7 shows that for increasing numbers of servers and
clients, the insertion rate increases monotonically. In the largest
case, 1,024 servers were targeted by 1,023 workers with 1 idle
rule engine, achieving an insertion rate of 19,883,495 items/sec.
As data operations are independent, congestion only occurs when
a server is targeted by multiple simultaneous operations, creating

Distributed parallel evaluation of dataflow programs... 7 2011/9/8

Figure 6. Task rate result for ADLB on SiCortex.

Figure 7. Data access rate result for ADLB on SiCortex.

a temporary hot spot. Continuing with the performance target of
1,000 tasks/sec per server, this allows each task to perform almost
20 data operations without posing a performance problem.

The data item identifiers were selected randomly, and thus, the
target servers were selected randomly. Using the existing Turbine
and ADLB APIs, an advanced application could be more selective
about data locations, eliminating the impact of hot spots. This case
does not measure the performance of data retrieval operations, but
that is covered implicitly in §7.4.

7.3 Distributed Data Structure Creation
Thus far we have only measured the performance of underlying ser-
vices. Here, we investigated the scalability of the distributed rule
processing system, the engine processes. The engines are capa-
ble of splitting certain large operations to distribute rule process-
ing work. An important use case is the construction of a distributed
container, which is a key part of dataflow scripts operating on struc-

Figure 8. Range creation rate result for Turbine on SiCortex.

tured data. The underlying operations here are used to implement
Swift’s range operator, which is analogous to the colon syntax in
Matlab, e.g., [0:10] produces the list of integers from 0 to 10. This
can be performed in Turbine by cooperating rule engines, resulting
in a distributed data structure useful for further processing.

We measured the performance of the creation of distributed con-
tainers on multiple rule engines. For each case plotted, a Turbine
system was configured to use the given number of engines and
servers. A Turbine distributed range operation was issued, creat-
ing a large container of containers. This triggered the creation of
script variables storing all integers from 0 to N × 100, 000, where
N is the number of Turbine rule engine processes. The operation
was split so that all rule engines were able to create and fill small
containers that were then linked into the top-level container. Work-
ers were not involved in this operation.

Figure 8 shows the number of cooperating control processes, in-
creasing to the maximal 2,048, half of which act as ADLB servers
and half of which act as Turbine engines, does not reach a per-
formance peak. Each operation results in the creation of an integer
script variable for later use. At the maximum measured system size,
the system created 1,262,639 usable script variables per second, in
addition to performing data structure processing overhead, totaling
204,800,000 integer script variables in addition to container struc-
tures.

7.4 Distributed Iteration
Once the application script has created a distributed data structure,
it is necessary to iterate over the structure and use it as a input for
further processing. For example, once the distributed container is
created in the previous test, it can be used as the target of a foreach
iteration by multiple cooperating rule engines.

To measure the performance of the evaluation of distributed
loops on multiple rule engines, for each case plotted, a Turbine sys-
tem was configured to use the given number of engines and servers.
In each case, a Turbine distributed range operation is issued, which
creates a large container of containers. The operation is split so that
all rule engines are able to create and fill small containers that are
then linked into the top-level container. Then, the rule engines ex-
ecute no-op rules that read each entry in the container once. The
measurement was made over the whole run, capturing range cre-
ation and iteration. Thus, each “operation” measured by the test is

Distributed parallel evaluation of dataflow programs... 8 2011/9/8

Figure 9. Range creation, iteration rate result for Turbine on
SiCortex.

a complex process that represents the lifetime of a user script vari-
able in a Turbine distributed data structure.

As in the previous test, each engine creates 100,000 variables
and links them into the distributed container, over which a dis-
tributed iteration loop is carried out. Figure 9 shows that perfor-
mance increases monotonically up to the largest measured system,
containing 1,024 servers and 1,024 engines, in addition to 1 idle
worker. At this scale, Turbine processes 566,685 operations per
second.

This rate may be considered 277 operations/sec per control pro-
cess, which approaches but falls below the performance require-
ment of 1000 operations/sec. per control process for our exas-
cale projection. However, there are multiple ways that performance
could be improved. First, this test was performed on the individu-
ally slow SiCortex processors. Additionally, we plan multiple op-
timizations to improve this performance. As noted in the previous
test, variables are created in a multi-step manner compatible with
our dataflow model. Since we are creating “literal” integers, these
steps could be replaced with composite operations that allocate,
initialize, and set values in one step. Multiple literals could be si-
multaneously set if batch operations were added to the API. The
loop splitting algorithm itself is targeted for optimization and bet-
ter load balancing. As a last resort, we could use more than 0.01%
of the processes as control processes.

8. Status and Future Work
In this paper, we reported on the status of the Turbine intermediate
code (TIC), which is a functional prototype, but is intended only for
use by a code generator. We have prototyped a rudimentary Swift
parser capable of emitting Turbine intermediate code, and will re-
place that with a fully functional compiler to create an implemen-
tation of Swift over Turbine. Some required features of the target
languages (Skywriting, PyDflow, Dryad, and Swift) are not yet im-
plemented. Swift’s ability to start operations on the members of an
array in a foreach loop as they are inserted before the array is
closed is an important planned extension.

We plan multiple performance improvements to the underlying
messaging used by Turbine, including the use of several compos-
ite operations to improve performance in commonly encountered
cases. Data locality could be better exposed to the user to improve

data access operations, and tasks could be bundled to reduce load
on the control processes.

Additionally, we plan several usability features, including
filesystem access operations and ease of use features to support
integration with user native code functions. We would like to inves-
tigate fault tolerance in the model- dataflow program are naturally
fault-tolerant, and in the case of total program shutdown, it is rela-
tively easy to restart from any disk-resident data items (as in make).
We intend to consider logging, checkpointing, and redundancy as
possible paths to make Turbine programs fault-tolerant.

9. Conclusion
The contributions of this work are as follows.

First, we have identified many-task, dataflow programs as a
highly useful model for many real-world applications, many of
which are currently running in Swift. We provided projections of
exascale parameters for these systems, resulting in requirements
for a next-generation task generator.

Next, we identified the need for a distributed memory system
for the management of the task generating script. We identified
the distributed future store as a key component, and produced a
high performance implementation. This involved the development
of a dependency processing engine, a scalable data store, as well
as supporting libraries to provide highly scalable data structure and
loop processing.

Finally, we reported the performance results from running the
core system features on the SiCortex. The results show that the
system is within striking distance of the required performance for
extreme cases.

While the TIC execution model is based on the semantics of
Swift, it is actually much more primitive. We believe that it is
capable of executing the data flow semantics of languages such
as Dryad, Ciel, PyDflow, and Swift, and could thus serve as a
prototype for a common intermediate code for these and similar
languages.

Acknowledgments
Authors: Justin M. Wozniak, Ketan Maheshwari, Zhao Zhang,
Todd Munson, Ian Foster, Dan Katz, Ewing Lusk, Matei Ripeanu,
Michael Wilde

This research is supported in part by the U.S. Department of
Energy Office of Science, Advanced Scientific Computing Re-
search under contract DE-AC02-06CH11357, FWP-57810. Com-
puting resources were provided by Argonne National Laboratory.

References
[1] S. Ahuja, N. Carriero, and D. Gelernter. Linda and Friends. IEEE

Computer, 19(8):26–34, 1986.

[2] T. G. Armstrong. Integrating task parallelism into the python pro-
gramming language. Master’s thesis, The University of Chicago, May
2011. URL http://people.cs.uchicago.edu/~tga/pubs/
armstrong-masters.pdf.

[3] B. A. Allan, R. Armstrong et al. A component architecture for high-
performance scientific computing. Int. J. High Perform. Comput.
Appl., 20:163–202, May 2006. ISSN 1094-3420. doi: 10.1177/
1094342006064488.

[4] P. Beckman, I. Foster, M. Wilde, and I. Raicu. SWIFT: Scalable
parallel scripting for scientific computing. SciDAC Review, (17), 2010.

[5] G. Bosilca, A. Bouteiller, A. Danalis, T. Herault, P. Lemarinier, and
J. Dongarra. DAGuE: A generic distributed DAG engine for high per-
formance computing. In Proc. International Parallel and Distributed
Processing Symposium, 2011.

Distributed parallel evaluation of dataflow programs... 9 2011/9/8

[6] J. Dean and S. Ghemawat. MapReduce: simplified data processing
on large clusters. Commun. ACM, 51:107–113, January 2008. ISSN
0001-0782. doi: 10.1145/1327452.1327492.

[7] J. Dinan, S. Krishnamoorthy, D. B. Larkins, J. Nieplocha, and P. Sa-
dayappan. Scioto: A framework for global-view task parallelism. Par-
allel Processing, International Conference on, 0:586–593, 2008. ISSN
0190-3918. doi: 10.1109/ICPP.2008.44.

[8] I. Foster, R. Olson, and S. Tuecke. Productive parallel programming:
The pcn approach. Sci. Program., 1:51–66, January 1992. ISSN 1058-
9244.

[9] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad:
distributed data-parallel programs from sequential building blocks.
SIGOPS Oper. Syst. Rev., 41:59–72, March 2007. ISSN 0163-5980.
doi: 10.1145/1272998.1273005.

[10] Z. Li and M. Parashar. Comet: a scalable coordination space for decen-
tralized distributed environments. In Second International Workshop
on Hot Topics in Peer-to-Peer Systems, HOT-P2P 2005, pages 104–
111, 2005.

[11] E. L. Lusk, S. C. Pieper, and R. M. Butler. More scalability, less pain:
A simple programming model and its implementation for extreme
computing. SciDAC Review, 17, January 2010.

[12] M. D. McCool. Structured parallel programming with deterministic
patterns. In Proc. HotPar, 2010.

[13] D. G. Murray and S. Hand. Scripting the cloud with Skywriting.
In HotCloud ’10: Proceedings of the Second USENIX Workshop on
Hot Topics in Cloud Computing, Boston, MA, USA, June 2010.
USENIX. URL http://www.usenix.org/event/hotcloud10/
tech/full_papers/Murray.pdf.

[14] D. G. Murray, M. Schwarzkopf, C. Smowton, S. Smith, A. Mad-
havapeddy, and S. Hand. Ciel: a universal execution engine for dis-
tributed data-flow computing. In Proc. NSDI, 2011.

[15] Object Management Group. CORBA component model, 2002.
http://www.omg.org/technology/documents/formal/
components.htm.

[16] H. Pan, B. Hindman, and K. Asanović. Lithe: Enabling efficient
composition of parallel libraries. In Proceedings of the First USENIX
conference on Hot topics in parallelism, HotPar’09, page 6, Berkeley,
CA, USA, 2009. USENIX Association. URL http://portal.acm.
org/citation.cfm?id=1855591.1855602.

[17] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan. Interpreting the
data: Parallel analysis with Sawzall. Scientific Programming, 13(4):
277–298, 2005.

[18] I. Raicu, Z. Zhang, M. Wilde, I. Foster, P. Beckman, K. Iskra, and
B. Clifford. Toward loosely coupled programming on petascale sys-
tems. In Proceedings of the 2008 ACM/IEEE Conference on Super-
computing, SC ’08, pages 22:1–22:12, Piscataway, NJ, USA, 2008.
IEEE Press.

[19] SwiftR: a parallel and distributed computing package for R. SwiftR: a
parallel and distributed computing package for R. http://people.
cs.uchicago.edu/~tga/swiftR/.

[20] G. Tanase, A. Buss, A. Fidel, Harshvardhan, I. Papadopoulos,
O. Pearce, T. Smith, N. Thomas, X. Xu, N. Mourad, J. Vu, M. Bianco,
N. M. Amato, and L. Rauchwerger. The STAPL Parallel Container
Framework. In Proc. ACM SIGPLAN Symp. Prin. Prac. Par. Prog.
(PPOPP), 2011.

[21] User info for SwiftR: a parallel and distributed computing package
for R. User info for SwiftR: a parallel and distributed computing
package for R. http://www.ci.uchicago.edu/wiki/bin/view/
SWFT/SwiftR.

[22] V. Sarkar et al. ExaScale software study: Software challenges in
extreme scale systems. DARPA Report, 2009.

[23] G. von Laszewski, I. Foster, J. Gawor, and P. Lane. A Java Commodity
Grid Kit. Concurrency and Computation: Practice and Experience, 13
(8-9), 2001.

[24] E. Walker, W. Xu, and V. Chandar. Composing and executing parallel
data-flow graphs with shell pipes. In Workshop on Workflows in
Support of Large-Scale Science at SC’09, 2009.

[25] M. Wilde, I. Foster, K. Iskra, P. Beckman, Z. Zhang, A. Espinosa,
M. Hategan, B. Clifford, and I. Raicu. Parallel scripting for applica-
tions at the petascale and beyond. Computer, 42(11), 2009.

[26] M. Wilde, M. Hategan, J. M. Wozniak, B. Clifford, D. S. Katz, and
I. Foster. Swift: A language for distributed parallel scripting. Parallel
Computing, 37 (In Press, published online):633–652, 2011. doi: DOI:
10.1016/j.parco.2011.05.005.

[27] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. K. Gunda,
and J. Currey. DryadLINQ: A system for general-purpose distributed
data-parallel computing using a high-level language. In Proceedings of
Symposium on Operating System Design and Implementation (OSDI),
Dec 2008.

[28] M. Zaharia, N. M. M. Chowdhury, M. Franklin, S. Shenker, and I. Sto-
ica. Spark: Cluster computing with working sets. Technical Re-
port UCB/EECS-2010-53, EECS Department, University of Califor-
nia, Berkeley, May 2010. URL http://www.eecs.berkeley.edu/
Pubs/TechRpts/2010/EECS-2010-53.html.

Distributed parallel evaluation of dataflow programs... 10 2011/9/8

